

An Overv iew

computer science

J. Glenn Brookshear
and

Dennis Brylow

12th Edition
Global Edition

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Global Edition contributions by
Manasa S.

A01_BROO1160_12_SE_FM.indd 1 01/08/14 9:37 AM

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson
Program Management Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Camille Trentacoste
Head, Learning Asset Acquisitions, Global Edition: Laura Dent
Acquisition Editor, Global Edition: Karthik Subramanian
Project Editor, Global Edition: Anuprova Dey Chowdhuri
Operations Specialist: Linda Sager
Cover Designer: Lumina Datamatics Ltd
Cover Image: Andrea Danti/Shutterstock
Cover Printer/Binder: Courier Kendallville

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of J. Glenn Brookshear and Dennis Brylow to be identified as the authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled computer science: An Overview, 12th edition, ISBN 973-0-13-376006-4, by
J. Glenn Brookshear and Dennis Brylow, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a
license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby
Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the author
or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents
and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is”
without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this
information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence
or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/
or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1-292-06116-2
ISBN 13: 978-1-292-06116-0

10  9  8  7  6  5  4  3  2  1
14  13  12  11  10

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 8 VeljovicStd-Books by Laserwords Private, LTD.

Printed and bound by Courier Kendallville.

The publisher’s policy is to use paper manufactured from sustainable forests.

A01_BROO1160_12_SE_FM.indd 2 01/08/14 9:37 AM

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience
We wrote this text for students of computer science as well as students from other
disciplines. As for computer science students, most begin their studies with the
illusion that computer science is programming, Web browsing, and Internet file
sharing because that is essentially all they have seen. Yet computer science is
much more than this. Beginning computer science students need exposure to
the breadth of the subject in which they are planning to major. Providing this
exposure is the theme of this book. It gives students an overview of computer
science—a foundation from which they can appreciate the relevance and inter-
relationships of future courses in the field. This survey approach is, in fact, the
model used for introductory courses in the natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for that training, but this text is about educating.

While writing previous editions of this text, maintaining accessibility for non-
technical students was a major goal. The result was that the book has been used
successfully in courses for students over a wide range of disciplines and educa-
tional levels, ranging from high school to graduate courses. This 12th edition is
designed to continue that tradition.

New in the 12th Edition
The underlying theme during the development of this 12th edition has been incor-
porating an introduction to the Python programming language into key chapters.
In the earliest chapters, these supplementary sections are labeled optional.

Preface

	 3

A01_BROO1160_12_SE_FM.indd 3 01/08/14 9:37 AM

	 4 Preface

By Chapter 5, we replace the previous editions’ Pascal-like notation with Python
and Python-flavored pseudocode.

This represents a significant change for a book that has historically striven
to sidestep allegiance to any specific language. We make this change for several
reasons. First, the text already contains quite a bit of code in various languages,
including detailed pseudocode in several chapters. To the extent that readers are
already absorbing a fair amount of syntax, it seems appropriate to retarget that
syntax toward a language they may actually see in a subsequent course. More
importantly, a growing number of instructors who use this text have made the
determination that even in a breadth-first introduction to computing, it is difficult
for students to master many of the topics in the absence of programming tools
for exploration and experimentation.

But why Python? Choosing a language is always a contentious matter, with
any choice bound to upset at least as many as it pleases. Python is an excellent
middle ground, with:

•	 a clean, easily learned syntax,
•	 simple I/O primitives,
•	 data types and control structures that correspond closely to the

pseudocode primitives used in earlier editions, and
•	 support for multiple programming paradigms.

It is a mature language with a vibrant development community and copi-
ous online resources for further study. Python remains one of the top 10 most
commonly used languages in industry by some measures, and has seen a sharp
increase in its usage for introductory computer science courses. It is particularly
popular for introductory courses for non-majors, and has wide acceptance in
other STEM fields such as physics and biology as the language of choice for com-
putational science applications.

Nevertheless, the focus of the text remains on broad computer science
concepts; the Python supplements are intended to give readers a deeper taste
of programming than previous editions, but not to serve as a full-fledged intro-
duction to programming. The Python topics covered are driven by the existing
structure of the text. Thus, Chapter 1 touches on Python syntax for representing
data—integers, floats, ASCII and Unicode strings, etc. Chapter 2 touches on Python
operations that closely mirror the machine primitives discussed throughout the
rest of the chapter. Conditionals, loops, and functions are introduced in Chapter 5,
at the time that those constructs are needed to devise a sufficiently complete
pseudocode for describing algorithms. In short, Python constructs are used to
reinforce computer science concepts rather than to hijack the conversation.

In addition to the Python content, virtually every chapter has seen revisions,
updates, and corrections from the previous editions.

Organization
This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presenta-
tion in which each topic leads to the next. It begins with the fundamentals of
information encoding, data storage, and computer architecture (Chapters 1 and 2);
progresses to the study of operating systems (Chapter 3) and computer networks

A01_BROO1160_12_SE_FM.indd 4 01/08/14 9:37 AM

	 5Organization

(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters and
sections are surprisingly independent and can usually be read as isolated units or
rearranged to form alternative sequences of study. Indeed, the book is often used
as a text for courses that cover the material in a variety of orders. One of these
alternatives begins with material from Chapters 5 and 6 (Algorithms and Program-
ming Languages) and returns to the earlier chapters as desired. I also know of
one course that starts with the material on computability from Chapter 12. In still
other cases, the text has been used in “senior capstone” courses where it serves as
merely a backbone from which to branch into projects in different areas. Courses
for less technically-oriented audiences may want to concentrate on Chapters 4
(Networking and the Internet), 9 (Database Systems), 10 (Computer Graphics),
and 11 (Artificial Intelligence).

On the opening page of each chapter, we have used asterisks to mark some
sections as optional. These are sections that cover topics of more specific interest
or perhaps explore traditional topics in more depth. Our intention is merely to
provide suggestions for alternative paths through the text. There are, of course,
other shortcuts. In particular, if you are looking for a quick read, we suggest the
following sequence:

Section Topic

1.1–1.4 Basics of data encoding and storage

2.1–2.3 Machine architecture and machine language

3.1–3.3 Operating systems

4.1–4.3 Networking and the Internet

5.1–5.4 Algorithms and algorithm design

6.1–6.4 Programming languages

7.1–7.2 Software engineering

8.1–8.3 Data abstractions

9.1–9.2 Database systems

10.1–10.2 Computer graphics

11.1–11.3 Artificial intelligence

12.1–12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspective,
discusses the current state of affairs, and indicates directions of research. Another
theme is the role of abstraction and the way in which abstract tools are used to
control complexity. This theme is introduced in Chapter 0 and then echoed in
the context of operating system architecture, networking, algorithm develop-
ment, programming language design, software engineering, data organization,
and computer graphics.

A01_BROO1160_12_SE_FM.indd 5 01/08/14 9:37 AM

	 6 Preface

To Instructors
There is more material in this text than students can normally cover in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you
to pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. We suggest encouraging students to read
the material not explicitly included in your course. We underrate students if we
assume that we have to explain everything in class. We should be helping them
learn to learn on their own.

We feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. As academics, we too often assume that students will
appreciate our perspective of a subject—often one that we have developed over
many years of working in a field. As teachers, we think we do better by present-
ing material from the student’s perspective. This is why the text starts with data
representation/storage, machine architecture, operating systems, and network-
ing. These are topics to which students readily relate—they have most likely
heard terms such as JPEG and MP3; they have probably recorded data on CDs
and DVDs; they have purchased computer components; they have interacted
with an operating system; and they have used the Internet. By starting the course
with these topics, students discover answers to many of the “why” questions they
have been carrying for years and learn to view the course as practical rather than
theoretical. From this beginning it is natural to move on to the more abstract
issues of algorithms, algorithmic structures, programming languages, software
development methodologies, computability, and complexity that those of us in
the field view as the main topics in the science. As already stated, the topics are
presented in a manner that does not force you to follow this bottom-up sequence,
but we encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly,
and the lessons they learn implicitly are often better absorbed than those that
are studied explicitly. This is significant when it comes to “teaching” problem
solving. Students do not become problem solvers by studying problem-solving
methodologies. They become problem solvers by solving problems—and not just
carefully posed “textbook problems.” So this text contains numerous problems,
a few of which are intentionally vague—meaning that there is not necessarily a
single correct approach or a single correct answer. We encourage you to use these
and to expand on them.

Other topics in the “implicit learning” category are those of professionalism,
ethics, and social responsibility. We do not believe that this material should be
presented as an isolated subject that is merely tacked on to the course. Instead,
it should be an integral part of the coverage that surfaces when it is relevant.
This is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.9,
9.7, and 11.7 present such topics as security, privacy, liability, and social aware-
ness in the context of operating systems, networking, software engineering,
database systems, and artificial intelligence. You will also find that each chapter
includes a collection of questions called Social Issues that challenge students to
think about the relationship between the material in the text and the society in
which they live.

A01_BROO1160_12_SE_FM.indd 6 01/08/14 9:37 AM

	 7Supplemental Resources

Thank you for considering our text for your course. Whether you do or do not
decide that it is right for your situation, I hope that you find it to be a contribution
to the computer science education literature.

Pedagogical Features
This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this 12th edition. These are classified as Questions &
Exercises, Chapter Review Problems, and Social Issues. The Questions & Exer-
cises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint
at related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for
the introductory chapter). They are designed to serve as “homework” problems
in that they cover the material from the entire chapter and are not answered in
the text.

Also at the end of each chapter are the questions in the Social Issues category.
They are designed for thought and discussion. Many of them can be used to
launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains
references to other material relating to the subject of the chapter. The websites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

Supplemental Resources
A variety of supplemental materials for this text are available at the book’s com-
panion website: www.pearsonglobaleditions.com/brookshear. The following
are accessible to all readers:

•	 Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

•	 Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

•	 Manuals that teach the basics of Java and C+ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified
instructors at Pearson Education’s Instructor Resource Center. Please visit
www.pearsonglobaleditions.com/brookshear or contact your Pearson sales
representative for information on how to access them:

•	 Instructor’s Guide with answers to the Chapter Review Problems
•	 PowerPoint lecture slides
•	 Test bank

Errata for this book (should there be any!) will be available at
www.pearsonglobaleditions.com/brookshear.

A01_BROO1160_12_SE_FM.indd 7 01/08/14 9:37 AM

	 8 Preface

To Students
Glenn Brookshear is a bit of a nonconformist (some of his friends would say more
than a bit) so when he set out to write this text he didn’t always follow the advice
he received. In particular, many argued that certain material was too advanced
for beginning students. But, we believe that if a topic is relevant, then it is rel-
evant even if the academic community considers it to be an “advanced topic.”
You deserve a text that presents a complete picture of computer science—not
a watered-down version containing artificially simplified presentations of only
those topics that have been deemed appropriate for introductory students. Thus,
we have not avoided topics. Instead, we’ve sought better explanations. We’ve
tried to provide enough depth to give you an honest picture of what computer
science is all about. As in the case of spices in a recipe, you may choose to skip
some of the topics in the following pages, but they are there for you to taste if you
wish—and we encourage you to do so.

We should also point out that in any course dealing with technology, the
details you learn today may not be the details you will need to know tomorrow.
The field is dynamic—that’s part of the excitement. This book will give you a cur-
rent picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. We encourage you to start
the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in us by choosing to read our book.
As authors we have an obligation to produce a manuscript that is worth your time.
We hope you find that we have lived up to this obligation.

Acknowledgments
First and foremost, I thank Glenn Brookshear, who has shepherded this book, “his
baby,” through eleven previous editions, spanning more than a quarter century of
rapid growth and tumultuous change in the field of computer science. While this
is the first edition in which he has allowed a co-author to oversee all of the revi-
sions, the pages of this 12th edition remain overwhelmingly in Glenn’s voice and,
I hope, guided by his vision. Any new blemishes are mine; the elegant underlying
framework is all his.

I join Glenn in thanking those of you who have supported this book by read-
ing and using it in previous editions. We are honored.

David T. Smith (Indiana University of Pennsylvania) played a significant
role in co-authoring revisions to the 11th edition with me, many of which are
still visible in this 12th edition. David’s close reading of this edition and careful
attention to the supplemental materials have been essential. Andrew Kuemmel
(Madison West), George Corliss (Marquette), and Chris Mayfield (James Madison)
all provided valuable feedback, insight, and/or encouragement on drafts for this
edition, while James E. Ames (Virginia Commonwealth), Stephanie E. August
(Loyola), Yoonsuck Choe (Texas A&M), Melanie Feinberg (UT-Austin), Eric
D. Hanley (Drake), Sudharsan R. Iyengar (Winona State), Ravi Mukkamala
(Old Dominion), and Edward Pryor (Wake Forest) all offered valuable reviews of
the Python-specific revisions.

A01_BROO1160_12_SE_FM.indd 8 01/08/14 9:37 AM

	 9Acknowledgments

Others who have contributed in this or previous editions include J. M. Adams,
C. M. Allen, D. C. S. Allison, E. Angel, R. Ashmore, B. Auernheimer, P. Bankston,
M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown,
B. Calloni, J. Carpinelli, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M.
J. Crowley, F. Deek, M. Dickerson, M. J. Duncan, S. Ezekiel, C. Fox, S. Fox,
N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson, L. Hunt, M.
Hutchenreuther, L. A. Jehn, K. K. Kolberg, K. Korb, G. Krenz, J. Kurose, J. Liu,
T. J. Long, C. May, J. J. McConnell, W. McCown, S. J. Merrill, K. Messersmith,
J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S. Noonan, G. Nutt, W. W. Oblitey,
S. Olariu, G. Riccardi, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G. Saito, W.
Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, Z. Shen, G. Sheppard, J. C. Simms,
M. C. Slattery, J. Slimick, J. A. Slomka, J. Solderitsch, R. Steigerwald, L. Steinberg,
C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato, P. Tromovitch,
P. H. Winston, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals we give our sincere thanks.

As already mentioned, you will find Java and C++ manuals at the text’s
Companion Website that teach the basics of these languages in a format com-
patible with the text. These were written by Diane Christie. Thank you, Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the companion website.

I also thank the good people at Pearson who have supported this project.
Tracy Johnson, Camille Trentacoste, and Carole Snyder in particular have been
a pleasure to work with, and brought their wisdom and many improvements to
the table throughout the process.

Finally, my thanks to my wife, Petra—“the Rock”—to whom this edition is
dedicated. Her patience and fortitude all too frequently exceeded my own, and
this book is better for her steadying influence.

D.W.B.

Pearson wishes to thank Arup Bhattacharjee, Soumen Mukherjee, and Chethan
Venkatesh for reviewing the Global Edition.

A01_BROO1160_12_SE_FM.indd 9 01/08/14 9:37 AM

	 Chapter 0	 Introduction  13
	 0.1	 The Role of Algorithms  14
	 0.2	 The History of Computing  16
	 0.3	 An Outline of Our Study  21
	 0.4	 The Overarching Themes of Computer Science  23

	 Chapter 1	 Data Storage  31
	 1.1	 Bits and Their Storage  32
	 1.2	 Main Memory  38
	 1.3	 Mass Storage  41
	 1.4	 Representing Information as Bit Patterns  46
	 *1.5	 The Binary System  52
	 *1.6	 Storing Integers  58
	 *1.7	 Storing Fractions  64
	 *1.8	 Data and Programming  69
	 *1.9	 Data Compression  75
	 *1.10	 Communication Errors  81

	 Chapter 2	 Data Manipulation  93
	 2.1	 Computer Architecture  94
	 2.2	 Machine Language  97
	 2.3	 Program Execution  103
	 *2.4	 Arithmetic/Logic Instructions  110
	 *2.5	 Communicating with Other Devices  115
	 *2.6	 Programming Data Manipulation  120
	 *2.7	 Other Architectures  129

	 Chapter 3	 Operating Systems  139
	 3.1	 The History of Operating Systems  140
	 3.2	 Operating System Architecture  144
	 3.3	 Coordinating the Machine’s Activities  152

Contents

	 10

*Asterisks indicate suggestions for optional sections.

A01_BROO1160_12_SE_FM.indd 10 01/08/14 9:37 AM

	 11Contents

	 *3.4	 Handling Competition Among Processes  155
	 3.5	 Security  160

	 Chapter 4	 Networking and the Internet  169
	 4.1	 Network Fundamentals  170
	 4.2	 The Internet  179
	 4.3	 The World Wide Web  188
	 *4.4	 Internet Protocols  197
	 4.5	 Security  203

	 Chapter 5	 Algorithms  217
	 5.1	 The Concept of an Algorithm  218
	 5.2	 Algorithm Representation  221
	 5.3	 Algorithm Discovery  228
	 5.4	 Iterative Structures  234
	 5.5	 Recursive Structures  245
	 5.6	 Efficiency and Correctness  253

	 Chapter 6	 Programming Languages  271
	 6.1	 Historical Perspective  272
	 6.2	 Traditional Programming Concepts  280
	 6.3	 Procedural Units  292
	 6.4	 Language Implementation  300
	 6.5	 Object-Oriented Programming  308
	 *6.6	 Programming Concurrent Activities  315
	 *6.7	 Declarative Programming  318

	 Chapter 7	 Software Engineering  331
	 7.1	 The Software Engineering Discipline  332
	 7.2	 The Software Life Cycle  334
	 7.3	 Software Engineering Methodologies  338
	 7.4	 Modularity  341
	 7.5	 Tools of the Trade  348
	 7.6	 Quality Assurance  356
	 7.7	 Documentation  360
	 7.8	 The Human-Machine Interface  361
	 7.9	 Software Ownership and Liability  364

	 Chapter 8	 Data Abstractions  373
	 8.1	 Basic Data Structures  374
	 8.2	 Related Concepts  377
	 8.3	 Implementing Data Structures  380
	 8.4	 A Short Case Study  394
	 8.5	 Customized Data Types  399
	 8.6	 Classes and Objects  403
	 *8.7	 Pointers in Machine Language  405

A01_BROO1160_12_SE_FM.indd 11 01/08/14 9:37 AM

	 12 Contents

	 Chapter 9	 Database Systems  415
	 9.1	 Database Fundamentals  416
	 9.2	 The Relational Model  421
	 *9.3	 Object-Oriented Databases  432
	 *9.4	 Maintaining Database Integrity  434
	 *9.5	 Traditional File Structures  438
	 9.6	 Data Mining  446
	 9.7	 Social Impact of Database Technology  448

	Chapter 10	 Computer Graphics  457
	 10.1	 The Scope of Computer Graphics  458
	 10.2	 Overview of 3D Graphics  460
	 10.3	 Modeling  461
	 10.4	 Rendering  469
	 *10.5	 Dealing with Global Lighting  480
	 10.6	 Animation  483

	Chapter 11	 Artificial Intelligence  491
	 11.1	 Intelligence and Machines  492
	 11.2	 Perception  497
	 11.3	 Reasoning  503
	 11.4	 Additional Areas of Research  514
	 11.5	 Artificial Neural Networks  519
	 11.6	 Robotics  526
	 11.7	 Considering the Consequences  529

	Chapter 12	 Theory of Computation  539
	 12.1	 Functions and Their Computation  540
	 12.2	 Turing Machines  542
	 12.3	 Universal Programming Languages  546
	 12.4	 A Noncomputable Function  552
	 12.5	 Complexity of Problems  556
	 *12.6	 Public-Key Cryptography  565

Appendixes  575
	 A	 ASCII  577
	 B	� Circuits to Manipulate Two’s Complement

	 Representations  578
	 C	 A Simple Machine Language  581
	 D	 High-Level Programming Languages  583
	 E	 The Equivalence of Iterative and Recursive Structures  585
	 F	 Answers to Questions & Exercises  587

Index  629

A01_BROO1160_12_SE_FM.indd 12 01/08/14 9:37 AM

C H A P T E R

Introduction
In this preliminary chapter we consider the scope of computer

science, develop a historical perspective, and establish a

foundation from which to launch our study.

0

0.1	 The Role of Algorithms

0.2	 The History of
Computing

0.3	 An Outline of Our Study

0.4	 The Overarching
Themes of Computer Science
Algorithms
Abstraction
Creativity

Data
Programming
Internet
Impact

M00_BROO1160_12_SE_C00.indd 13 01/08/14 11:18 AM

	 14 Chapter 0  Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information processing,
algorithmic solutions of problems, and the algorithmic process itself. It provides
the underpinnings for today’s computer applications as well as the foundations
for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typical
university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will
be interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1  The Role of Algorithms
We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usually
displayed on the inside of the washer’s lid or perhaps on the wall of a laundro-
mat), for playing music (expressed in the form of sheet music), and for perform-
ing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is compat-
ible with the machine. A representation of an algorithm is called a program. For
the convenience of humans, computer programs are usually printed on paper or
displayed on computer screens. For the convenience of machines, programs are
encoded in a manner compatible with the technology of the machine. The process
of developing a program, encoding it in machine-compatible form, and inserting
it into a machine is called programming. Programs, and the algorithms they
represent, are collectively referred to as software, in contrast to the machinery
itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of
directions that described how all problems of a particular type could be solved.
One of the best known examples of this early research is the long division
algorithm for finding the quotient of two multiple-digit numbers. Another
example is the Euclidean algorithm, discovered by the ancient Greek math-
ematician Euclid, for finding the greatest common divisor of two positive
integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance
of that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without

M00_BROO1160_12_SE_C00.indd 14 01/08/14 11:18 AM

	 150.1  The Role of Algorithms

Figure 0.1   An algorithm for a magic trick

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Announce that you have selected some red cards and some black cards.

Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughly mixing the cards.

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
 appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
 appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
 the remaining cards to prove your claim.

As long as there are face-down cards on the table, repeatedly
execute the following steps:

Figure 0.2   The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
 otherwise, the greatest common divisor is the value currently assigned to N.

M00_BROO1160_12_SE_C00.indd 15 01/08/14 11:18 AM

	 16 Chapter 0  Introduction

understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

Capturing and conveying intelligence (or at least intelligent behavior) by
means of algorithms allows us to build machines that perform useful tasks.
Consequently, the level of intelligence displayed by machines is limited by
the intelligence that can be conveyed through algorithms. We can construct a
machine to perform a task only if an algorithm exists for performing that task. In
turn, if no algorithm exists for solving a problem, then the solution of that prob-
lem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gödel’s incomplete-
ness theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any com-
plete study of our arithmetic system lies beyond the capabilities of algorithmic
activities. This realization shook the foundations of mathematics, and the study
of algorithmic capabilities that ensued was the beginning of the field known today
as computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2  The History of Computing
Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it probably had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine
is quite simple, consisting of beads strung on rods that are in turn mounted in
a rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads that
this “computer” represents and stores data. For control of an algorithm’s execu-
tion, the machine relies on the human operator. Thus the abacus alone is merely
a data storage system; it must be combined with a human to create a complete
computational machine.

In the time period after the Middle Ages and before the Modern Era, the
quest for more sophisticated computing machines was seeded. A few inventors
began to experiment with the technology of gears. Among these were Blaise
Pascal (1623–1662) of France, Gottfried Wilhelm Leibniz (1646–1716) of Germany,
and Charles Babbage (1792–1871) of England. These machines represented data
through gear positioning, with data being entered mechanically by establishing
initial gear positions. Output from Pascal’s and Leibniz’s machines was achieved
by observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibility
of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flex-
ibility in these machines. Pascal’s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the struc-
ture of the machine itself. In a similar manner, Leibniz’s machine had its algo-
rithms firmly embedded in its architecture, although the operator could select
from a variety of arithmetic operations it offered. Babbage’s Difference Engine

M00_BROO1160_12_SE_C00.indd 16 01/08/14 11:18 AM

	 170.2  The History of Computing

(of which only a demonstration model was constructed) could be modified to
perform a variety of calculations, but his Analytical Engine (never funded for con-
struction) was designed to read instructions in the form of holes in paper cards.
Thus Babbage’s Analytical Engine was programmable. In fact, Augusta Ada Byron
(Ada Lovelace), who published a paper in which she demonstrated how Babbage’s
Analytical Engine could be programmed to perform various computations, is
often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752–1834), who, in
1801, had developed a weaving loom in which the steps to be performed dur-
ing the weaving process were determined by patterns of holes in large thick
cards made of wood (or cardboard). In this manner, the algorithm followed by
the loom could be changed easily to produce different woven designs. Another
beneficiary of Jacquard’s idea was Herman Hollerith (1860–1929), who applied
the concept of representing information as holes in paper cards to speed up the
tabulation process in the 1890 U.S. census. (It was this work by Hollerith that
led to the creation of IBM.) Such cards ultimately came to be known as punched
cards and survived as a popular means of communicating with computers well
into the 1970s.

Nineteenth-century technology was unable to produce the complex gear-
driven machines of Pascal, Leibniz, and Babbage cost-effectively. But with the
advances in electronics in the early 1900s, this barrier was overcome. Examples
of this progress include the electromechanical machine of George Stibitz,
completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944 at
Harvard University by Howard Aiken and a group of IBM engineers. These
machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally

Figure 0.3   Chinese wooden abacus (Pink Badger/Fotolia)

M00_BROO1160_12_SE_C00.indd 17 01/08/14 11:18 AM

	 18 Chapter 0  Introduction

electronic computers. The first of these vacuum tube machines was apparently
the Atanasoff-Berry machine, constructed during the period from 1937 to 1941
at Iowa State College (now Iowa State University) by John Atanasoff and his
assistant, Clifford Berry. Another was a machine called Colossus, built under
the direction of Tommy Flowers in England to decode German messages dur-
ing the latter part of World War II. (Actually, as many as ten of these machines
were apparently built, but military secrecy and issues of national security kept
their existence from becoming part of the “computer family tree.”) Other, more
flexible machines, such as the ENIAC (electronic numerical integrator and calcu
lator) developed by John Mauchly and J. Presper Eckert at the Moore School of
Electrical Engineering, University of Pennsylvania, soon followed (Figure 0.4).

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the 1940s
were reduced over the decades to the size of single cabinets. At the same time,
the processing power of computing machines began to double every two years (a
trend that has continued to this day). As work on integrated circuitry progressed,
many of the components within a computer became readily available on the open
market as integrated circuits encased in toy-sized blocks of plastic called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer
hobbyists who built homemade computers from combinations of chips. It was
within this “underground” of hobby activity that Steve Jobs and Stephen Wozniak

Figure 0.4   Three women operating the ENIAC’s (Electronic Numerical Integrator And Computer)
main control panel while the machine was at the Moore School. The machine was later moved to
the U.S. Army’s Ballistics Research Laboratory. (Courtesy U.S. Army.)

M00_BROO1160_12_SE_C00.indd 18 01/08/14 11:18 AM

	 190.2  The History of Computing

built a commercially viable home computer and, in 1976, established Apple Com-
puter, Inc. (now Apple Inc.) to manufacture and market their products. Other
companies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they
were not widely accepted by the business community, which continued to look
to the well-established IBM and its large mainframe computers for the majority
of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal
computer, or PC, whose underlying software was developed by a newly formed
company known as Microsoft. The PC was an instant success and legitimized

Babbage’s Difference Engine
The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco­
nomically feasible manner and if the data processing demands of commerce and
government had been on the scale of today’s requirements, Babbage’s ideas could
have led to a computer revolution in the 1800s. As it was, only a demonstration model
of his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of
4 in the following manner (see the following diagram). We first compute the differ­
ences of the squares we already know: 12 - 02 = 1, 22 - 12 = 3, and 32 - 22 = 5.
Then we compute the differences of these results: 3 - 1 = 2, and 5 - 3 = 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe­
matics can show that it does), we conclude that the difference between the value
(42 - 32) and the value (32 - 22) must also be 2. Hence (42 - 32) must be 2 greater
than (32 - 22), so 42 - 32 = 7 and thus 42 = 32 + 7 = 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on
the values of 12, 22, 32, and 42. (Although a more in−depth discussion of successive
differences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y = x2
is a straight line with a slope of 2.)

0

1

2

3

4

5

0

1

4

9

16

1

3

5

7

2

2

2

2

First
difference

Second
differencex x2

M00_BROO1160_12_SE_C00.indd 19 01/08/14 11:18 AM

	 20 Chapter 0  Introduction

the desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desktop
computer, most of which continue to be marketed with software from Microsoft.
At times, however, the term PC is used interchangeably with the generic terms
desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

At the same time that desktop and laptop computers were being accepted and
used in homes, the miniaturization of computing machines continued. Today,
tiny computers are embedded within a wide variety of electronic appliances and
devices. Automobiles may now contain dozens of small computers running Global
Positioning Systems (GPS), monitoring the function of the engine, and providing

Augusta Ada Byron
Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815–1852) that was complicated by poor health and the fact that she was a non­
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ­
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is
considered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions, whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of Defense
when it named a prominent programming language (Ada) in her honor.

M00_BROO1160_12_SE_C00.indd 20 01/08/14 11:18 AM

	 210.3  An Outline of Our Study

voice command services for controlling the car’s audio and phone communica-
tion systems.

Perhaps the most revolutionary application of computer miniaturization is
found in the expanding capabilities of smartphones, hand-held general-purpose
computers on which telephony is only one of many applications. More power-
ful than the supercomputers of prior decades, these pocket-sized devices are
equipped with a rich array of sensors and interfaces including cameras, micro-
phones, compasses, touch screens, accelerometers (to detect the phone’s orienta-
tion and motion), and a number of wireless technologies to communicate with
other smartphones and computers. Many argue that the smartphone is having a
greater effect on global society than the PC revolution.

0.3  An Outline of Our Study
This text follows a bottom-up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage), we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation), we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction
of future technology.

Google
Founded in 1998, Google Inc. has become one of the world’s most recognized tech­
nology companies. Its core service, the Google search engine, is used by millions
of people to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet-based video-sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging society.
For example, Google’s search engine has led to questions regarding the extent to which
an international company should comply with the wishes of individual governments;
YouTube has raised questions regarding the extent to which a company should be
liable for information that others distribute through its services as well as the degree
to which the company can claim ownership of that information; Google Books has
generated concerns regarding the scope and limitations of intellectual property rights;
and Google Maps has been accused of violating privacy rights.

M00_BROO1160_12_SE_C00.indd 21 01/08/14 11:18 AM

	 22 Chapter 0  Introduction

In Chapter 3 (Operating Systems), we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the user’s
requests.

In Chapter 4 (Networking and the Internet), we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols, the
Internet’s structure and internal operation, the World Wide Web, and numerous
issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency and
correctness.

In Chapter 6 (Programming Languages), we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages. We
investigate these paradigms and languages as well as consider issues of grammar
and language translation.

Chapter 7 (Software Engineering) introduces the branch of computer sci-
ence known as software engineering, which deals with the problems encoun-
tered when developing large software systems. The underlying theme is that
the design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineering
has become an important field of research within computer science, drawing from
such diverse fields as engineering, project management, personnel management,
programming language design, and even architecture.

In the next two chapters we look at ways data can be organized within a
computer system. In Chapter 8 (Data Abstractions), we introduce techniques
traditionally used for organizing data in a computer’s main memory and
then trace the evolution of data abstraction from the concept of primitives
to today’s object-oriented techniques. In Chapter 9 (Database Systems), we
consider methods traditionally used for organizing data in a computer’s mass
storage and investigate how extremely large and complex database systems are
implemented.

In Chapter 10 (Computer Graphics), we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence), we learn that to develop more use-
ful machines computer science has turned to the study of human intelligence
for insight. The hope is that by understanding how our own minds reason and

M00_BROO1160_12_SE_C00.indd 22 01/08/14 11:18 AM

	 230.4  The Overarching Themes of Computer Science

perceive, researchers will be able to design algorithms that mimic these processes
and thus transfer comparable capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable from
a practical perspective. Thus, it is through this study that we are able to grasp the
scope and limitations of algorithmic systems.

In each chapter, our goal is to explore the subject deeply enough to enable
true understanding. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.4  The Overarching Themes of Computer Science
In addition to the main topics of each chapter as listed above, we also hope to
broaden your understanding of computer science by incorporating several over-
arching themes.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society, and computer
technology is so prevalent that familiarity with it is fundamental to being a mem-
ber of the modern world. Computing technology has altered the ability of govern-
ments to exert control; had enormous impact on global economics; led to startling
advances in scientific research; revolutionized the role of data collection, storage,
and applications; provided new means for people to communicate and interact;
and has repeatedly challenged society’s status quo. The result is a proliferation of
subjects surrounding computer science, each of which is now a significant field of
study in its own right. Moreover, as with mechanical engineering and physics, it
is often difficult to draw a line between these fields and computer science itself.
Thus, to gain a proper perspective, our study will not only cover topics central to
the core of computer science but also will explore a variety of disciplines dealing
with both applications and consequences of the science. Indeed, an introduction
to computer science is an interdisciplinary undertaking.

As we set out to explore the breadth of the field of computing, it is helpful to
keep in mind the main themes that unite computer science. While the codifica-
tion of the “Seven Big Ideas of Computer Science”1 postdates the first ten editions
of this book, they closely parallel the themes of the chapters to come. The “Seven
Big Ideas” are, briefly: Algorithms, Abstraction, Creativity, Data, Programming,
Internet, and Impact. In the chapters that follow, we include a variety of topics,
in each case introducing central ideas of the topic, current areas of research, and
some of the techniques being applied to advance knowledge in that realm. Watch
for the “Big Ideas” as we return to them again and again.

1www.csprinciples.org

M00_BROO1160_12_SE_C00.indd 23 01/08/14 11:18 AM

	 24 Chapter 0  Introduction

Algorithms
Limited data storage capabilities and intricate, time-consuming programming pro-
cedures restricted the complexity of the algorithms used in the earliest comput-
ing machines. However, as these limitations began to disappear, machines were
applied to increasingly larger and more complex tasks. As attempts to express
the composition of these tasks in algorithmic form began to tax the abilities of the
human mind, more and more research efforts were directed toward the study of
algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Gödel’s incompleteness theorem, mathemati-
cians had already been investigating those questions regarding algorithmic pro-
cesses that advancing technology was now raising. With that, the stage was set
for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms.
The scope of this science is broad, drawing from such diverse subjects as mathe-
matics, engineering, psychology, biology, business administration, and linguistics.
Indeed, researchers in different branches of computer science may have very
distinct definitions of the science. For example, a researcher in the field of com-
puter architecture may focus on the task of miniaturizing circuitry and thus
view computer science as the advancement and application of technology. But, a
researcher in the field of database systems may see computer science as seeking
ways to make information systems more useful. And, a researcher in the field of
artificial intelligence may regard computer science as the study of intelligence
and intelligent behavior.

Nevertheless, all of these researchers are involved in aspects of the science of
algorithms. Given the central role that algorithms play in computer science (see
Figure 0.5), it is instructive to identify some questions that will provide focus for
our study of this big idea.

•	 Which problems can be solved by algorithmic processes?
•	 How can the discovery of algorithms be made easier?

Figure 0.5   The central role of algorithms in computer science

Limitations of

Application of

Analysis of

Execution of

Representation ofDiscovery of

Communication of
Algorithms

M00_BROO1160_12_SE_C00.indd 24 01/08/14 11:18 AM

	 250.4  The Overarching Themes of Computer Science

•	 How can the techniques of representing and communicating algorithms
be improved?

•	 How can the characteristics of different algorithms be analyzed and
compared?

•	 How can algorithms be used to manipulate information?
•	 How can algorithms be applied to produce intelligent behavior?
•	 How does the application of algorithms affect society?

Abstraction
The term abstraction, as we are using it here, refers to the distinction between
the external properties of an entity and the details of the entity’s internal
composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which represents a level of abstraction at which the use of the component is iso-
lated from the details of the component’s internal composition.

It is by applying abstraction that we are able to construct, analyze, and
manage large, complex computer systems that would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we
view the system in terms of components, called abstract tools, whose internal
composition we ignore. This allows us to concentrate on how each component
interacts with other components at the same level and how the collection as a
whole forms a higher-level component. Thus we are able to comprehend the
part of the system that is relevant to the task at hand rather than being lost in
a sea of details.

We emphasize that abstraction is not limited to science and technology. It
is an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the vari-
ous conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With each
new advancement, a small part of society chooses to specialize in its implementa-
tion, while the rest of us learn to use the results as abstract tools. In this manner,
society’s warehouse of abstract tools expands, and society’s ability to progress
increases.

Abstraction is a recurring pillar of our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion
in which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

M00_BROO1160_12_SE_C00.indd 25 01/08/14 11:18 AM

	 26 Chapter 0  Introduction

Creativity
While computers may merely be complex machines mechanically executing rote
algorithmic instructions, we shall see that the field of computer science is an
inherently creative one. Discovering and applying new algorithms is a human
activity that depends on our innate desire to apply our tools to solve problems
in the world around us. Computer science not only extends forms of expression
spanning the visual, language and musical arts, but also enables new modes of
digital expression that pervade the modern world.

Creating large software systems is much less like following a cookbook recipe
than it is like conceiving of a grand new sculpture. Envisioning its form and
function requires careful planning. Fabricating its components requires time,
attention to detail, and practiced skill. The final product embodies the design
aesthetics and sensibilities of its creators.

Data
Computers are capable of representing any information that can be discretized
and digitized. Algorithms can process or transform such digitally represented
information in a dizzying variety of ways. The result of this is not merely the
shuffling of digital data from one part of the computer to another; computer
algorithms enable us to search for patterns, to create simulations, and to cor-
relate connections in ways that generate new knowledge and insight. Massive
storage capacities, high-speed computer networks, and powerful computational
tools are driving discoveries in many other disciplines of science, engineering
and the humanities. Whether predicting the effects of a new drug by simulating
complex protein folding, statistically analyzing the evolution of language across
centuries of digitized books, or rendering 3D images of internal organs from a
noninvasive medical scan, data is driving modern discovery across the breadth
of human endeavors.

Some of the questions about data that we will explore in our study include:

•	 How do computers store data about common digital artifacts, such as
numbers, text, images, sounds, and video?

•	 How do computers approximate data about analog artifacts in the real
world?

•	 How do computers detect and prevent errors in data?
•	 What are the ramifications of an ever-growing and interconnected digital

universe of data at our disposal?

Programming
Translating human intentions into executable computer algorithms is now
broadly referred to as programming, although the proliferation of languages
and tools available now bear little resemblance to the programmable comput-
ers of the 1950s and early 1960s. While computer science consists of much
more than computer programming, the ability to solve problems by devising
executable algorithms (programs) remains a foundational skill for all computer
scientists.

Computer hardware is capable of executing only relatively simple algorithmic
steps, but the abstractions provided by computer programming languages allow

M00_BROO1160_12_SE_C00.indd 26 01/08/14 11:18 AM

	 270.4  The Overarching Themes of Computer Science

humans to reason about and encode solutions for far more complex problems.
Several key questions will frame our discussion of this theme.

•	 How are programs built?
•	 What kinds of errors can occur in programs?
•	 How are errors in programs found and repaired?
•	 What are the effects of errors in modern programs?
•	 How are programs documented and evaluated?

Internet
The Internet connects computers and electronic devices around the world and has
had a profound impact in the way that our technological society stores, retrieves,
and shares information. Commerce, news, entertainment, and communication
now depend increasingly on this interconnected web of smaller computer net-
works. Our discussion will not only describe the mechanisms of the Internet as
an artifact, but will also touch on the many aspects of human society that are now
intertwined with the global network.

The reach of the Internet also has profound implications for our privacy
and the security of our personal information. Cyberspace harbors many dangers.
Consequently, cryptography and cybersecurity are of growing importance in our
connected world.

Impact
Computer science not only has profound impacts on the technologies we use to
communicate, work, and play, it also has enormous social repercussions. Progress
in computer science is blurring many distinctions on which our society has based
decisions in the past and is challenging many of society’s long-held principles. In
law, it generates questions regarding the degree to which intellectual property can
be owned and the rights and liabilities that accompany that ownership. In ethics,
it generates numerous options that challenge the traditional principles on which
social behavior is based. In government, it generates debates regarding the extent
to which computer technology and its applications should be regulated. In phi-
losophy, it generates contention between the presence of intelligent behavior and
the presence of intelligence itself. And, throughout society, it generates disputes
concerning whether new applications represent new freedoms or new controls.

Such topics are important for those contemplating careers in computing or
computer-related fields. Revelations within science have sometimes found contro-
versial applications, causing serious discontent for the researchers involved. More-
over, an otherwise successful career can quickly be derailed by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology
is infiltrating society so rapidly that few, if any, are independent of its effects.

This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted
to social, ethical, and legal impacts of computer science. These include security
concerns, issues of software ownership and liability, the social impact of database
technology, and the consequences of advances in artificial intelligence.

M00_BROO1160_12_SE_C00.indd 27 01/08/14 11:18 AM

	 28 Chapter 0  Introduction

Moreover, there is often no definitive correct answer to a problem, and many
valid solutions are compromises between opposing (and perhaps equally valid)
views. Finding solutions in these cases often requires the ability to listen, to rec-
ognize other points of view, to carry on a rational debate, and to alter one’s own
opinion as new insights are gained. Thus, each chapter of this text ends with a col-
lection of questions under the heading “Social Issues” that investigate the relation-
ship between computer science and society. These are not necessarily questions
to be answered. Instead, they are questions to be considered. In many cases, an
answer that may appear obvious at first will cease to satisfy you as you explore
alternatives. In short, the purpose of these questions is not to lead you to a “cor-
rect” answer, but rather to increase your awareness, including your awareness
of the various stakeholders in an issue, your awareness of alternatives, and your
awareness of both the short- and long-term consequences of those alternatives.

Philosophers have introduced many approaches to ethics in their search for
fundamental theories that lead to principles for guiding decisions and behavior.

Character-based ethics (sometimes called virtue ethics) were promoted by
Plato and Aristotle, who argued that “good behavior” is not the result of apply-
ing identifiable rules, but instead is a natural consequence of “good character.”
Whereas other ethical bases, such as consequence-based ethics, duty-based ethics,
and contract-based ethics, propose that a person resolve an ethical dilemma by ask-
ing, “What are the consequences?”, “What are my duties?”, or “What contracts do I
have?,” character-based ethics proposes that dilemmas be resolved by asking, “Who
do I want to be?” Thus, good behavior is obtained by building good character, which
is typically the result of sound upbringing and the development of virtuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety
of ethical questions in the professionals’ area of expertise. Then, by discussing
the pros and cons in these cases, the professionals become more aware, insight-
ful, and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

	 1.	 The premise that our society is different from what it would have been without
the computer revolution is generally accepted. Is our society better than it
would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

	 2.	 Is it acceptable to participate in today’s technical society without making an
effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?

Social Issues

M00_BROO1160_12_SE_C00.indd 28 01/08/14 11:18 AM

	 29

Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

	 3.	 By using cash in financial transactions, individuals have traditionally had the
option to manage their financial affairs without service charges. However,
as more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is there
a point at which these charges unfairly restrict an individual’s access to the
economy? For example, suppose an employer pays employees only by check,
and all financial institutions were to place a service charge on check cash-
ing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

	 4.	 In the context of interactive television, to what extent should a company be
allowed to retrieve information from children (perhaps via an interactive game
format)? For example, should a company be allowed to obtain a child’s report
on his or her parents’ buying patterns? What about information about the child?

	 5.	 To what extent should a government regulate computer technology and its
applications? Consider, for example, the issues mentioned in questions 3
and 4. What justifies governmental regulation?

	 6.	 To what extent will our decisions regarding technology in general, and com-
puter technology in particular, affect future generations?

	 7.	 As technology advances, our educational system is constantly challenged to
reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some argue
that long division should also give way to abstraction. What other subjects are
involved with similar controversies? Do modern word processors eliminate
the need to develop spelling skills? Will the use of video technology someday
remove the need to read?

	 8.	 The concept of public libraries is largely based on the premise that all citizens
in a democracy must have access to information. As more information is
stored and disseminated via computer technology, does access to this technol-
ogy become a right of every individual? If so, should public libraries be the
channel by which this access is provided?

	 9.	 What ethical concerns arise in a society that relies on the use of abstract tools?
Are there cases in which it is unethical to use a product or service without
understanding how it works? Without knowing how it is produced? Or, with-
out understanding the byproducts of its use?

	10.	 As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

	11.	 Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in which
Orwell predicted?

	12.	 If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what

Social Issues

M00_BROO1160_12_SE_C00.indd 29 01/08/14 11:18 AM

